机器学习

完整机器学习项目的工作流程

明确问题是进行机器学习的第一步。机器学习的训练过程通常都是一件非常耗时的事情,胡乱尝试时间成本是非常高的。这里的抽象成数学问题,指的我们明确我们可以获得什么样的数据,目标是一个分类还是回归或者是聚类的问题,如果都不是的话,如果划归为其中的某类问题。

机器学习-逻辑回归

我们可以按照任务的种类,将任务分为回归任务和分类任务。那这两者的区别是什么呢?按照较官方些的说法,输入变量与输出变量均为连续变量的预测问题是回归问题,输出变量为有限个离散变量的预测问题成为分类问题。

机器学习与深度学习常见47个面试题

一年一度的校园招聘已经开始了,为了帮助参加校园招聘、社招的同学更好的准备面试,SIGAI整理出了一些常见的机器学习、深度学习面试题。理解它们,对你通过技术面试非常有帮助,当然,我们不能只限于会做这些题目,最终的目标是真正理解机器学习与深度学习的原理、应用。

机器学习——模型评估与选择

错误率为分类错误的样本数占样本总数的比例,相应的精度=1-错误率,模型的实际预测输出与样本的真实输出之间的差异称为“误差”,模型在训练集上的误差称为“训练误差”,在新样本上的误差称为“泛化误差”。

你真的理解正则化了吗?

说到正则化大家应该都不陌生,这个在机器学习和深度学习中都是非常常见的,常用的正则化有L1正则化和L2正则化。提到正则化大家就会想到是它会将权重添加到损失函数计算中来降低模型过拟合的程度。了解更多一点的同学还会说,L1正则化会让模型的权重参数稀疏化(部分权重的值为0),L2正则化会让模型的权重有趋于0的偏好。

比较:生成式模型 VS 判别式模型

常见的生成式模型有:线性判别式分析 (Linear Discriminant Analysis)、朴素贝叶斯 (Native Bayesian)、K近邻 (KNN)、混合高斯模型 (GaussianMixture Model)、隐马尔科夫模型 (HiddenMarkov Model)、贝叶斯网络 (Bayesian Networks)。。。。。。

汇丰彩票官网 吉林快3 大福彩票平台 欢乐生肖官方网站 金榜彩票平台 网上现金彩票开户 星城彩票官网 009彩票投注 星城彩票注册 必发彩票开户